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Abstract
No-core shell model (NCSM) calculations using ab initio effective interactions
are very successful in reproducing experimental nuclear spectra. The main
theoretical approach is the use of effective operators, which include correlations
left out by the truncation of the model space to a numerically tractable size. We
review recent applications of the effective operator approach, within a NCSM
framework, to the renormalization of the nucleon–nucleon interaction, as well
as scalar and tensor operators.

PACS number: 21.60.Cs 23.20.Js

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The theory of effective operators plays an important role in the modern approach to nuclear
structure. Effective interactions are the basic ingredient of the no-core shell model (NCSM),
one of the ab initio methods that provides a solution to the nuclear many-body problem starting
from high-precision nucleon–nucleon (NN) interactions (i.e., that describe the two-nucleon
data with high accuracy) and theoretical three-nucleon forces.

Numerical solution to the A-body Schrödinger equation can be obtained only if one
truncates the Hilbert space to a finite, yet sufficiently small dimension. Restriction of the space
to a numerically tractable size requires that operators for physical observables be replaced by
effective operators that are designed to account for such effects. Most applications of the
effective operator theory are limited to deriving effective interactions, but other observables
are of great interest as well. In particular, for electromagnetic operators, a long-standing
problem in the phenomenological shell model was the use of effective charges for protons and
neutrons. Perturbation theory has been partially successful in describing empirical effective
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charges needed to explain experimental transition strengths [1]. However, recent investigations
using the unitary transformation approach within the framework of the NCSM to obtain
effective operators have reported some progress in explaining the large values of the empirical
effective charges [2]. We will discuss briefly this result and its consequences later.

In the restricted space, the effective operators are constructed to reproduce the values of the
corresponding physical observables in the full space. However, the renormalization procedure
usually alters properties of bare operators; for example, the interaction is no longer Hermitian,
and general transition operators change their rotational symmetry properties. While in some
cases non-Hermitian Hamiltonians have advantages [3], in our case this presents a major
inconvenience. Moreover, some approaches introduce energy dependence of the resulting
effective operators, an additional complication for solving the nuclear many-body problem.
This drawback is, however, avoided in the unitary transformation approach to effective
operators of Okubo [4] and others [5–8]. This method allows us to construct all effective
operators in an energy-independent form, and, through an additional similarity transformation,
to restore the Hermiticity of the effective interaction and the rotational properties of transition
operators.

This paper is organized as follows: we review the theoretical approach in section 2,
and then apply the procedure in realistic cases, using realistic two-body interactions, for the
Hamiltonian in section 3, and other general operators in section 4. We draw our conclusions
in section 5.

2. Theoretical approach

In this section we review the similarity transformation approach to effective operators and
discuss its practical implementation in the case of the nuclear many-body Hamiltonian.

2.1. Formal theory

It is not our intention to discuss in great detail the method; we will point out the main features,
following the derivation in [9] and [10].

In our approach, the full Hilbert space is divided into a model space, with the associated
projection operator P, and a complementary, excluded space, with the associated projection
operator Q (P + Q = 1). The goal is to perform many-body calculations in the model space,
using a transformed Hamiltonian H,

H = XHX−1, (1)

so that a finite subset of eigenvalues of the initial Hamiltonian H are reproduced. We need to
point out that this is a general approach, which can be applied to non-Hermitian Hamiltonian
operators that can arise, for example, in the context of boson mappings.

To better understand the conditions that we will impose on the transformation operator X,
we start with the results of the Feshbach projection formalism on the Schrödinger equation

H|�〉 = E� |�〉. (2)

In general for non-Hermitian Hamiltonians, the left and right eigenvectors are not related
simply by a Hermitian conjugation, but we have the freedom to choose a normalization so
that 〈�̃E|�E〉 = 1, where 〈�̃E| is the left eigenvector corresponding to the eigenvalue E� .
It follows from equation (2) that the component of the wavefunction |�〉 outside the model
space is given by

Q|�〉 = 1

E� − QHQ
QHP |�〉, (3)
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so that the effective Hamiltonian in the model space can be expressed as

Heff = PHP + PHQ
1

E − QHQ
QHP. (4)

An immediate consequence of equation (4) is that in order to obtain an energy-independent
Hamiltonian in the model space, it is sufficient to impose one of the following decoupling
conditions:

QHP = 0, (5)

or

PHQ = 0. (6)

We note, however, that the former condition also ensures that the Q-space component of the
wavefunction |�〉 vanishes, although this is not true for its complementary left eigenstate.
Moreover, as it will become clear in the derivation of the effective operators below, both
conditions have to be satisfied so that one obtains energy-independent effective operators
corresponding to other observables besides the Hamiltonian.

In the case of general operators, O, properly transformed by the same transformation
operator X, e.g., the Hamiltonian H in equation (1), one has to compute a matrix element of the
form 〈�̃|O|�〉, where 〈�̃| corresponds possibly to another left eigenvector of H. Using the
fact that the Q-component of the left eigenstate 〈�̃| can be written similarly to equation (3)

〈�̃|Q = 〈�̃|PHQ
1

E� − QHQ
, (7)

one can extract the expression for the effective operator in the model space P

Oeff = POP + PHQ
1

E� − QHQ
QOP + POQ

1

E� − QHQ
QHP

+ PHQ
1

E� − QHQ
QOQ

1

E� − QHQ
QHP. (8)

As advertised, in order to obtain an energy-independent expression for a general effective
operator one needs to construct the transformation operator X so that both decoupling
conditions (5) and (6) are satisfied. Consequently, both left and right P eigenstates of the
transformed Hamiltonian H have components only in the model space. A number of other
subtleties exist within this effective operator approach [11].

In order to determine the transformation X, we consider the following ansatz [9, 10]:

X = exp(−ω) exp(�), (9)

with the new operators fulfilling the additional requirements

ω = QωP, � = P�Q.

Hence, the decoupling condition (5) transforms into a quadratic equation for ω

QHP = QHP − QωHP + QHωP − ωHω = 0, (10)

which does not depend on �, while the decoupling condition (6) becomes a linear equation
for �

PHQ = PHQ + P�HQ − Q�ωHQ − PH�Q − PHω�Q = 0. (11)

The result of applying such a transformation is the following expressions for the effective
Hamiltonian:

Heff = PHP + PHω, (12)
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which is manifestly non-Hermitian, even if the original Hamiltonian H is Hermitian, and for
general effective operators:

Oeff = (P + � − �ω)O(P + ω), (13)

which also changes symmetry properties under the Hermitian conjugation operation.
We have made no assumption up to now about the original Hamiltonian, but in most

cases of interest, H is Hermitian. For such applications, one can introduce an additional
transformation [12], so that the effective Hamiltonian in the model space is also Hermitian [9]

Heff = P + ω†
√

P + ω†ω
H

P + ω√
P + ω†ω

. (14)

Moreover, for Hermitian Hamiltonians one finds � = (P + ω†ω)−1ω† [9], so that a general
effective operator can also be written similarly to the effective Hamiltonian, i.e., involving
only the operator ω

Oeff = P + ω†
√

P + ω†ω
O

P + ω√
P + ω†ω

. (15)

There are two iterative solutions of equation (10) that determine the transformation
operator ω: one that converges to the states with the largest P-space components and is
equivalent to the solution of Krenciglowa and Kuo [13], and another which converges to states
lying closest to a chosen parameter appearing in the iteration procedure [6, 7]. However, we
present here a more efficient method to find ω. It relies on the fact that the components of
the exact eigenvectors in the complementary space are mapped into the model space. Thus, a
simple and efficient means to compute the matrix elements of ω is [14]

〈αQ|ω|αP 〉 =
∑
k∈K

〈αQ|�k〉〈�k|αP 〉−1, (16)

where |αP 〉 and |αQ〉 are the basis states of the P and Q spaces, respectively, and |�k〉 denotes
states from a selected set K of exact eigenvectors of the Hamiltonian in the full space. The
dimension of the subspace K is equal to the dimension of the model space P. In the next
subsection, we will present a practical implementation of equation (16).

To conclude this brief review of the formal effective operator theory, we would like to
reiterate the main idea: in order to obtain energy-independent operators in a restricted model
space, it is sufficient to design a transformation X so that all the matrix elements of the
transformed Hamiltonian connecting the model and the excluded space are identically zero,
i.e., equations (5) and (6) are simultaneously satisfied. Making the ansatz in equation (9),
one can find equations which determine the transformation, so that the decoupling conditions
are satisfied. Finally, in the case of Hermitian Hamiltonians, such as the many-body nuclear
Hamiltonian, we gave the general expressions for the effective Hamiltonian and effective
operators in the model space. Even in this case, one can, in principle, obtain non-Hermitian
effective Hamiltonians, but one can always make an additional transformation to obtain a
Hermitian structure, which is much more convenient to apply to the description of a system
of A nucleons using realistic interactions.

2.2. Application to the nuclear Hamiltonian

We assume that the system of A nucleons is described by the non-relativistic intrinsic
Hamiltonian

HA = 1

A

A∑
i<j=1

p2
ij

2m
+

A∑
i<j=1

V NN
ij ,
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where �pij = �pi − �pj are the relative momenta between two nucleons, and V NN
ij is the NN

potential, such as the local Argonne v18 [15, 16] or the non-local charge-dependent Bonn
potential [17], which describe with high accuracy the experimental two-nucleon data. The
generalization to include three-body forces is straightforward, but much more involved (see,
e.g., [18]). Thus, for the purpose of this paper, we neglect three-body forces.

In the NCSM approach, the single-particle wavefunctions are described using harmonic
oscillator (HO) states. One then constructs many-body states using a restricted set of one-body
HO states. The model space is determined by the requirement that the many-body basis states
can have up to Nmaxh̄� excitations above the minimum energy configuration, where h̄� is the
HO energy parameter and Nmax is an integer. Including all states up to a given HO energy
allows us to separate exactly by projection containing spurious centre-of-mass (CM) motion,
even when we work in a non-translationally invariant basis.

As seen explicitly in equation (16), the solution of the A-body problem is required in order
to solve for the transformation operator ω. However, the eigenvectors |�k〉 are, in principle,
the final goal, as they allow computation of any properties of the system. To practically
implement the method to solve many-body problems, we introduce the cluster approximation.
This consists in finding ω for the a-body problem, a < A, and then using the effective
interaction thus obtained for solving the A-body system. There are two limiting cases of the
cluster approximation: first, when a → A, the solution becomes exact; a higher-order cluster
is a better approximation and was shown to increase the rate of convergence [18, 19]. Second,
when P → 1, the effective interaction approaches the bare interaction; as a result, the cluster
approximation effects can be minimized by increasing as much as possible the size of the
model-space size.

We emphasize that in the a-body cluster approximation the explicit decoupling conditions
in equations (5)–(6) are now fulfilled only for the a-body problem:

QaH(a)Pa = QaXaHaX
−1
a Pa = 0,

where Pa,Qa refer to the corresponding projection operators for the a-particle system.
Conditions (5)–(6) are, in general, violated for the A-body problem, but the errors become
smaller with the increasing size of the model space.

The rate of convergence for a fixed cluster approximation can be improved by adding
to HA a CM Hamiltonian, which also provides a single-particle HO basis for performing
numerical calculations. Doing this, we obtain

H�
A = HA +

�P 2

2mA
+

1

2
mA�2R2

=
A∑

i=1

[ �p2
i

2m
+

1

2
m�2�r2

i

]
+

A∑
i>j=1

[
V NN

ij − m�2

2A
(�ri − �rj )

2

]

=
A∑

i=1

hi +
A∑

i>j=1

vij . (17)

In a a-body cluster approximation, this ensures a dependence of the transformation, and,
therefore, of the effective interaction on A. The CM term does not introduce any net influence
on the converged intrinsic properties of the many-body calculation, as we subtract it in the
final many-body calculation. Moreover, although this addition and subtraction does not affect
our exact treatment of the CM motion, this procedure introduces a pseudo-dependence upon
the HO energy h̄�, and the two-body cluster approximation described above will exhibit
this dependence. In the largest model spaces, however, important observables manifest a
considerable independence of the energy h̄� and the model space size, i.e., the value of Nmax.
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Figure 1. 4He: dependence of the ground- and excited-state energies on Nmax in the three-body
cluster approximation (left panel), and comparison of the convergence rates of the ground-state
energy for the two- and three-body cluster approximations (right panel). Two different HO energies
(19 and 28 MeV) have been used in each case. The dashed line is the exact ground-state energy
[20] for the CD Bonn potential used in this investigation, while the dotted lines represent the
experimental ground- and first excited-state energies.

Finally, note that even if the original Hamiltonian contained just one- and two-body terms,
the operator X, the transformed Hamiltonian Heff (by means of equation (14)) and transformed
operators (by means of equation (15)) all contain up to irreducible a-body terms. (The exact
effective operators contain up to irreducible A-body terms.)

3. Application to effective interactions

The first application of the effective operator theory in the context of the NCSM is to compute
an effective interaction in a restricted model space. While the cluster approximation described
in section 2 is general for a nucleons, we are currently limited by the complexity of the
calculations to a � 3.

In figure 1 we present the results for 4He, using both the two- and three-body cluster
approximations. In the left panel, we show both the ground- and excited-state energies using
HO energies of 19 and 28 MeV and a three-body cluster in order to compute the effective
interaction for 4He, starting from the CD Bonn interaction [17]. The convergence pattern
shows a dependence upon the HO energy. Thus, the ground-state energy converges faster
when h̄� = 28 MeV, but both HO energies eventually converge to the exact result obtained
by solving, e.g., the Fadeev–Yakubovski equations [20]. The complete convergence of the
ground-state energy can be obtained within the NCSM, as demonstrated, e.g., in figure 1 of
[21]. Because we neglect three-body interactions, the converged result misses by a few MeV
the experimental value. Unlike for the ground state, the first 0+ excited-state energy has a
faster convergence rate for h̄� = 19 MeV. However, this state converges much more slowly
than the ground state, and even in the largest model spaces the results are quite sensitive to the
choice of the HO energy parameter.

As expected, a higher-body cluster approximation includes more correlations in the
interactions, and the convergence is faster. This is illustrated in the right panel of figure 1,
where we plot the ground-state energy dependence on Nmax obtained by computing the effective
interaction using both the two- and three-body cluster approximations. The rate of convergence
is faster in the three-body cluster approximation for both HO energies chosen for this example.



From non-Hermitian effective operators to large-scale no-core shell model calculations for light nuclei 9989

Table 1. B(E2), in e2 fm4, for selected nuclei and model spaces, using the bare operator and the
effective operator, computed in the two-body cluster approximation.

Nucleus Observable Model space Bare operator Effective operator

6Li B(E2, 1+0 → 3+0) 2h̄� 2.647 2.784
6Li B(E2, 1+0 → 3+0) 10h̄� 10.221 –
6Li B(E2, 2+0 → 1+0) 2h̄� 2.183 2.269
6Li B(E2, 2+0 → 1+0) 10h̄� 4.502 –
10C B(E2, 2+

1 0 → 0+0) 4h̄� 3.05 3.08
12C B(E2, 2+

1 0 → 0+0) 4h̄� 4.03 4.05

We have used 4He in this section to illustrate the convergence properties of effective
interactions, but the method has been applied successfully to the description of the spectra of
p-shell nuclei [14, 18, 22–24] and beyond.

4. Application to general operators

So far, most applications of the NCSM approach have been to calculating the effective
interaction, and only a few of publications [2, 25–27] have investigated the renormalization of
general operators in realistic calculations of nuclear properties. In [2] Navrátil et al performed
large-basis NCSM calculations, which were later explicitly truncated into a 0h̄� space and
fitted to one-body quadrupole operators. By construction these calculations contained all
correlations up to six body due to the truncation and, hence, yielded the large effective charge
renormalizations of 1.5e for protons and 0.5e for neutrons found empirically. However, the full
space renormalization of selected electromagnetic operators has been reported only relatively
recently [26, 27]. We review below the results for one- and two-body operators.

4.1. One-body operators

In the a-body cluster approximation, the effective operators corresponding to an one-body
operator will have, in general, irreducible a-body terms. The simplest approximation is the
two-body cluster. In order to apply it, one has to rewrite the original one-body contributions
as a sum of two-body terms. For details on this procedure, we refer the reader to, e.g. [25, 26].

In the case of the quadrupole operator, we follow the procedure described in [26]. Selected
B(E2) results, obtained using the two-body cluster approximation for 6Li and 12,14C are
presented in table 1. We have performed calculations with effective operators only in small
model spaces for several reasons. First, as expected from the convergence properties of
effective operators mentioned in section 2, larger renormalization effects are expected in
smaller model spaces. Second, the application of the procedure for tensor operators is much
more involved, since they can connect states with different angular momentum or/and isospin.
Hence, in equation (15) one can have different transformation operators ω to the left and to
the right of the bare operator. Moreover, the number of two-body matrix elements for
non-scalar operators can be orders of magnitude larger than the number of one-body matrix
elements. Finally, the main purpose of these investigations was a qualitative understanding of
the influence of effective operators and not a highly accurate description of the experimental
data.

As illustrated in table 1, the effective operators have very little effect on the results for
the qudrupole transitions. For 6Li, we also present the B(E2) values obtained in 10h̄� model
space [23]. If the effect of the renormalization of the quadrupole operator had been significant,
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then the B(E2) values in the small model spaces would be closer to the results in the 10h̄�

model space, which is obviously not the case. The same weak renormalization can be observed
for the carbon isotopes, listed in table 1. This is contrary to the previous investigation in the
framework of the NCSM [2], which reported obtaining the correct effective proton and neutron
phenomenological charges. However, the main difference is that the 6Li calculation in [2]
included up to six-body correlations. Comparison of the two results suggests that higher-order
clusters can play an important role in the renormalization of the quadrupole operator.

4.2. Two-body operators

In a previous publication [26], we used a two-body Gaussian operator to demonstrate the
dependence of the renormalization upon the range of the operator. In a recent paper [27],
we computed the longitudinal–longitudinal distribution function, part of the inclusive (e, e′)
response. In this paper we present similar results, obtained in smaller model spaces but
converged nevertheless at high momentum transfer (=short range), because we use the
appropriate effective operators. Moreover, the effect of the renormalization is larger in smaller
model spaces, as noted before.

To define the longitudinal–longitudinal distribution function, one starts with the Coulomb
sum rule

SL(q) = 1

Z

∫ ∞

ωel

dω SL(q, ω), (18)

which is the total integrated strength measured in electron scattering. In equation (18),
SL(q, ω) = R(q, ω)/|GE,p(q, ω)|2, with R(q, ω) the longitudinal response function and
GE,p(q, ω) the proton electric form factor, while ωel is the energy of the recoiling A-nucleon
system with Z protons. SL(q), which is related to the Fourier transform of the proton–proton
distribution function [28, 29], can be expressed in terms of the longitudinal form factor FL(q)

and the longitudinal–longitudinal distribution function ρLL as [30]

SL(q) = 1

Z
〈g.s.|ρ†

L(q)ρL(q)|g.s.〉 − 1

Z
|〈g.s.|ρL(q)|g.s.〉|2

≡ 1 + ρLL(q) − ZFL(q)/GE,p(q, ωel).

If one neglects relativistic corrections and two-body currents, then ρL(q) is the charge operator,

ρL(q) = 1

2

A∑
i=1

exp(iq · ri )(1 + τz,i),

so that the longitudinal–longitudinal distribution function becomes [30]

ρLL(q) = 1

4Z

∑
i 
=j

〈g.s.|j0(q|ri − rj |)(1 + τz,i)(1 + τz,j )|g.s.〉.

In figure 2 we present the results for the longitudinal–longitudinal distribution function
for 4He. At high momentum transfer, the results obtained using bare operators depend strongly
upon the model space. On the other hand, the results obtained with effective operators are
model space invariant at high q, although figure 1 shows that the wavefunction is not fully
converged, since the energy is not converged in these very small model spaces. They agree
with the values computed in larger model spaces and different HO energies given in [27]. At
intermediate momentum transfer, i.e., q ≈ 2.5 fm−1, even the effective operator results vary.
This effect is due to the fact that the long-range part of the operator has not yet converged in
these small model spaces.
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Figure 2. The longitudinal–longitudinal distribution function in 4He, obtained using bare operators
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Similar results for the longitudinal–longitudinal distribution function have been obtained
for 12C, where calculations in very large model spaces are not possible. However, even in the
smallest model space, 0h̄�, we were able to obtain good results for high momentum transfer,
which reproduce the values in larger model spaces [27].

As demonstrated in [26] with a two-body Gaussian operator and illustrated here for
the longitudinal–longitudinal distribution function, in the two-body cluster approximation
the renormalization depends strongly on the range of the operator. Short-range operators
(high momentum transfer) are very well renormalized and the results become model-space
independent even in the two-body cluster approximation, while long-range operators, such as
the quadrupole transition operator, or the longitudinal–longitudinal distribution function for
small and intermediate momentum transfer, are only weakly renormalized.

5. Conclusions

In this paper, we have reviewed the application of the effective operator theory in the framework
of the NCSM. While in the derivation one can obtain non-Hermitian operators that are more
suitable for some applications [3], we construct, by means of additional transformations,
Hermitian operators, which are easier to utilize in large-scale calculations.

The ab initio NCSM has been applied successfully to the description of the nuclear
spectra for light nuclei [14, 18, 22–24], i.e., A � 16, and beyond [31, 32]. The wavefunctions
obtained can be used to calculate and predict nuclear properties, such as the proton radii of
halo nuclei [33], or the astrophysical S-factor [34], to cite just a couple of the most recent
results. Moreover, for light nuclei, the precision of the NCSM method makes it possible to
investigate the reliability of the chiral nuclear interaction. This follows from the fact that the
properties, e.g., energy spectra, of p-shell nuclei are sensitive to the subleading parts of the
chiral interactions, including three-nucleon forces [35]. For heavier nuclei, another approach,
designed to improve the convergence of the results, has been recently proposed, combining
the inverse J -matrix scattering technique and the NCSM [36].

In the two-body cluster approximation, one has now the ability to compute not only
the effective interaction, but also the consistent effective operators corresponding to scalar
and tensor observables. We have shown a strong dependence on the renormalization of
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the range of the bare operator. Thus, if the operator is of short range, then one obtains a
good renormalization in the two-body cluster approximation, as the unitary transformation
used to obtain the effective interaction renormalizes mostly the short-range repulsion of the
potential. Consequently, one obtains model-space independence results for such observables.
Long-range operators, on the other hand, are only weakly renormalized at the two-body cluster
level. In order to accommodate the long-range correlations one has to increase the model space
and/or use a higher-order cluster approximation. The success of latter was demonstrated by
the good results for the 0h̄� effective charges obtained in a restricted NCSM calculation [2].
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